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Flowing granular materials segregate due to differences in particle size (driven by
percolation) and density (driven by buoyancy). Modelling the segregation of mixtures
of large/heavy particles and small/light particles is challenging due to the opposing
effects of the two segregation mechanisms. Using discrete element method (DEM)
simulations of combined size and density segregation we show that the segregation
velocity is well described by a model that depends linearly on the local shear rate
and quadratically on the species concentration for free surface flows. Concentration
profiles predicted by incorporating this segregation velocity model into a continuum
advection–diffusion–segregation transport model match DEM simulation results well for a
wide range of particle size and density ratios. Most surprisingly, the DEM simulations and
the segregation velocity model both show that the segregation direction for a range of size
and density ratios depends on the local species concentration. This leads to a methodology
to determine the combination of particle size ratio, density ratio and particle concentration
for which a bidisperse mixture will not segregate.

Key words: granular media, granular mixing

1. Introduction

Granular segregation has been widely studied due to its importance in many areas ranging
from geophysics to industrial processes (Ottino & Lueptow 2008; Gray & Kokelaar 2010;
Gray & Ancey 2011; Gray 2018; Umbanhowar, Lueptow & Ottino 2019). Among the
particle properties that drive segregation, size and density are usually the dominant factors
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(Savage & Lun 1988; Khakhar, McCarthy & Ottino 1997). In dense granular flows of
size-disperse particles having the same density (S-systems), large particles tend to rise
as small particles fall through voids, a segregation mechanism known as percolation
(Williams 1968; Drahun & Bridgwater 1983; Savage & Lun 1988; Ottino & Khakhar
2000). For density-disperse mixtures of equal diameter particles (D-systems), segregation
is driven by a buoyant force mechanism in which heavy particles sink and light particles
rise (Ristow 1994; Khakhar et al. 1997; Khakhar, McCarthy & Ottino 1999; Pereira et al.
2011). Various continuum models have been proposed for segregation in S- or D-system
(Gray 2018; Umbanhowar et al. 2019), but few studies focus on bidisperse mixtures
where the constituent species vary in both size and density (i.e. SD-systems) with the
notable exceptions of papers by Jenkins & Yoon (2002), Marks, Rognon & Einav (2012),
Tunuguntla, Bokhove & Thornton (2014) and Gray & Ancey (2015). Though size and
density differences can reinforce each other, e.g. in mixtures of large light (LL) particles
and small heavy (SH) particles, a greater challenge is to predict segregation when the
two segregation mechanisms oppose each other, e.g. in mixtures of large heavy (LH)
particles and small light (SL) particles. The goal here is to model particle segregation
in a two-species mixture of particles differing simultaneously in both particle size and
density.

Previous studies used experiments and particle-based simulations to determine the
crossover condition between percolation and buoyancy for SD-systems. For vibrated
granular materials (the Brazil nut problem), segregation occurs as a consequence of
periodic dilation and compaction of the particle bed. The tendency of particles to sink
or rise in vibrated systems can be characterized by the ratios of large to small particle
diameter, Rd = dl/ds, and density, Rρ = ρl/ρs (Hong, Quinn & Luding 2001; Jenkins &
Yoon 2002; Breu et al. 2003; Ciamarra et al. 2006). These studies show that percolation
dominates (i.e. large particles rise) for Rd > Rρ . On the other hand, in flowing granular
systems segregation is related to the local shear and resulting dilation in the relatively
thin gravitationally driven flowing layers that are ubiquitous in industrial settings such as
heaps (Fan et al. 2017), chutes (Savage & Lun 1988; Pouliquen 1999) and tumblers (Hill
et al. 1999; Liu, Yang & Yu 2013), as well as in geophysical flows such as landslides
(Johnson et al. 2012). For example, free surface flow experiments with an equal-volume
mixture of large steel and small glass particles (Rρ = 3) in a rotating tumbler show that
segregation diminishes for Rd > 2 (Jain, Ottino & Lueptow 2005a,b). In addition, several
studies employ continuum mixture theory (Atkin & Craine 1976) to quantitively model
SD-segregation. For example, by assuming a species-specific stress proportional to the
mean diameter ratio of the species to the bulk, the momentum balance equation indicates
that large particles should rise for Rd > Rρ (Marks et al. 2012). However, discrete element
method (DEM) simulations of equal-volume mixtures flowing down a chute indicate that
the species-specific stress is proportional to the mean volume ratio of the species to the
bulk, rather than the diameter ratio, leading to the result that large particles should rise
for R3

d > Rρ (Tunuguntla et al. 2014). In addition to size and density ratios, the crossover
condition for when buoyancy or percolation dominates in rotating tumbler experiments
also depends on particle species concentration (Alonso, Satoh & Miyanami 1991) such
that LH particles sink at low concentrations but float at high concentrations. The observed
concentration dependent segregation direction is not predicted in the approaches by
Marks et al. (2012) or Tunuguntla et al. (2014), but has been explained in context of the
mixture theory by assuming the species-specific stress is a quadratic function of mixture
concentration (Gray & Ancey 2015).

Segregation experiments demonstrate the subtle interactions between particle size and
density, and DEM simulations reproduce these results for laboratory-scale geometries
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(Fan et al. 2013, 2014; Combarros et al. 2014; Garcia et al. 2016; Xiao et al.
2016). However, a first-principles-based predictive theory for combined size and density
segregation is lacking. Efforts have been made to extend continuum mixture theory
(Atkin & Craine 1976) beyond segregation in S- and D-systems (Bridgwater, Foo &
Stephens 1985; Dolgunin & Ukolov 1995; Gray & Thornton 2005; Fan & Hill 2011) to
model segregation in SD-systems (Marks et al. 2012; Tunuguntla et al. 2014; Gray &
Ancey 2015). The fundamental mechanisms on which these models are formulated (i.e.
partial stresses, interspecies drag) are not fully understood, and studies show that some
assumptions in the theory do not match results obtained from DEM simulations (Weinhart,
Luding & Thornton 2013; Tunuguntla, Weinhart & Thornton 2017; Duan et al. 2020). A
more fundamental approach is based on interparticle interactions (i.e. kinetic theory of
granular flows) (Arnarson & Jenkins 2004; Larcher & Jenkins 2013, 2015). However, this
approach is limited to mixtures that differ little in particle size or mass and it tends to
underestimate the segregation rate (Larcher & Jenkins 2015).

As an alternative, we consider a transport equation approach combined with a
mixture-specific segregation velocity model that has previously been used to predict either
size or density segregation alone (Fan et al. 2014; Xiao et al. 2016). This approach
has been successfully applied to various flow geometries as well as multidisperse and
polydisperse particle distributions (Umbanhowar et al. 2019), but has not yet been applied
to SD-systems where the particles species differ in both size and density. In this model,
the local segregation velocity of species i normal to the free surface is defined as wseg,i =
wi − w, where w is the bulk surface-normal velocity, wi is surface-normal velocity of
species i and concentration-gradient-driven effects are ignored. For bidisperse mixtures
of non-cohesive millimetre-sized particles varying in a single property (either size or
density), previous studies (Fan et al. 2014; Schlick et al. 2015a; Xiao et al. 2016) show
that wseg,i (previously referred as wp,i where the p subscript is a remnant of the initial
application to the percolation velocity in size-disperse systems) can be modelled with
reasonable fidelity using

wseg,i = Adsγ̇ (1 − ci), (1.1)

where ds is the small particle diameter (ds = dl for D-systems), γ̇ is the local shear
rate, 1 − ci is the local concentration of the other species comprising the mixture, and
the segregation coefficient, A, is a function of particle size or density ratio for the two
species. Equation (1.1) provides an accurate description of the segregation velocity in
most situations, but can fall short under certain conditions. First, recent studies indicate
that segregation flux, Φseg,i = wseg,ici, has an underlying asymmetry (van der Vaart et al.
2015; Jones et al. 2018) that depends on local particle concentration (i.e. small (or heavy)
particles among mostly large (or light) particles segregate faster than the other way
around), whereas (1.1) predicts a segregation flux dependence on concentration that is
symmetric with respect to ci = 0.5. Second, (1.1) does not consider size and density ratios
simultaneously. That is, A has been expressed as a function of either the size ratio alone
(Schlick et al. 2015a) (or volume ratio for non-spherical particles Jones et al. (2020))
in S-systems or the density ratio alone (Xiao et al. 2016) in D-systems, but not both.
As granular materials of practical interest can vary in both size and density, a more general
segregation velocity model is needed.

To address the observed asymmetry of the segregation velocity at equal concentrations
for size segregation in chute flows, Gajjar & Gray (2014) proposed a flux model equivalent
to a two-parameter quadratic form for the segregation velocity,

wseg,i = Aκ(1 − ci)(1 − κci), (1.2)
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where Aκ is a magnitude coefficient and κ is an asymmetry coefficient. Jones et al. (2018)
showed that this model characterizes both size- and density-bidisperse mixtures over a
wide range of size or density ratios, and expressed (1.2) in a form consistent with the
linear segregation velocity model of (1.1) as

wseg,i = [Ai + Bi(1 − ci)]dsγ̇ (1 − ci), (1.3)

where Ai and Bi can be determined from bidisperse heap flow simulations for a wide range
of size or density ratios. Comparison of (1.1) and (1.3) is enlightening. Both forms depend
on the product of the small particle diameter, the local shear rate and the concentration of
the other species, i.e. dsγ̇ (1 − ci). Furthermore, the quadratic model has a two-parameter,
concentration dependent term Ai + Bi(1 − ci) instead of the concentration independent
coefficient A in the linear model.

In order to model combined size and density segregation, it is necessary to find an
expression for the segregation velocity in a bidisperse mixture of particles accounting
for both particle size and density. To do this, we perform DEM simulations of particle
mixtures having a wide range of particle properties, varying in both size and density,
in the canonical free surface flow of a quasi-two-dimensional (quasi-2-D) bounded heap
flow. The advantage of this flow geometry is that it is simple to implement, is steady in a
frame of reference rising with the heap surface, and generates a wide range of segregation
velocities, shear rates and concentrations in a single simulation. Because of our previous
success with (1.3), we focus on this model for the combined size and density segregation,
knowing that this equation accurately reflects the segregation velocity in the limits of pure
size-driven or pure density-driven segregation over a range of concentrations.

Discrete element method simulation of quasi-2-D single-sided bounded heap flow
for size and density bidisperse mixtures is described in § 2. Based on simulation
results, a segregation velocity model analogous to (1.3) is extended to SD-systems in
§ 3. Using this model, it is possible to predict the combination of size ratio, density
ratio and concentration that minimizes segregation, an important result in practical
engineering systems to assure that particle mixtures remain mixed. In § 4, the continuum
advection–diffusion–segregation transport equation is solved using the combined size and
density segregation model to demonstrate that the model predictions match the simulation
results for a range of feed rates, feed concentrations and heap geometries. Conclusions are
given in § 5.

2. Simulation

We numerically simulate combined size and density segregation of bidisperse mixtures in
a single-sided quasi-2-D bounded heap where particles flow in a thin surface layer down a
slope much like the flow that occurs when filling a silo. An advantage of heap flows over
other flow configurations (e.g. plane shear flows and chute flows) is that the local shear rate
and the particle species concentration vary throughout the length and depth of a steady
flowing layer but remain constant at a particular location in the flow (when analysed from
a reference frame that rises with the heap surface), such that time-averaged segregation
data for a wide range of flow conditions can be obtained from just one simulation.
Segregation model parameters obtained from the steady single-sided quasi-2-D bounded
heap geometry are universal in that they can be applied to unsteady flows and other flow
geometries (Schlick et al. 2015b; Deng et al. 2019; Xiao et al. 2019; Deng et al. 2020;
Isner et al. 2020a). In this study, we conduct more than 350 simulations with different
combinations of particle size and density ratios in developing the SD-disperse segregation
model.
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Figure 1. Quasi-2-D bounded heap simulation set-up and segregation example. For these conditions, large
heavy particles (red, dl = 3 mm, ρl = 4 g cm−3) sink while small, light particles (blue, ds = 1.5 mm, ρs = 1
g cm−3) rise. Segregation occurs in the flowing layer, which is outlined schematically by the white rectangle
(the thickness is exaggerated by a factor of approximately two to make it more visible). Here, Rd = 2, Rρ = 4,
Wf = 3.3 cm, W = 50 cm, L = 52 cm, q = 20 cm2 s−1, δ = 1.5 cm and large particle feed concentration
ĉl = 0.2.

Our in-house DEM code (Isner et al. 2020a,b) runs on CUDA-enabled GPUs and has
been previously validated by heap flow experiments with millimetre-sized particles (Xiao
et al. 2016; Isner et al. 2020b). The bounded heap example shown in figure 1 is confined by
two parallel plates in the spanwise (normal to the xz-plane) direction with a gap thickness
of T = 15 mm. The heap width between the bounding endwalls is W = 0.5 m. To reduce
the number of simulated particles and save computation time, the bottom wall is inclined at
an angle β = 28◦, roughly matching the dynamic repose angle α in steady state. To create
a rough bottom boundary, particles that contact the bottom wall are immobilized. After
the particle bed exceeds 10–15 particle diameters in depth, the velocity and concentration
profiles in the flowing layer become steady, indicating that effects of the bottom boundary
can be neglected.

For all simulations, particle–particle and particle–wall contacts use a friction coefficient
of μ = 0.4, a binary collision time of tc = 0.5 ms and a restitution coefficient of e =
0.2. Here we choose e = 0.2 to minimize particle bouncing in the DEM simulations, a
factor that is not considered in the later analysis. Previous results indicate that the flow
kinematics and the particle segregation for free surface flows such as those considered
here are largely independent of e (Silbert et al. 2001; Jing, Kwok & Leung 2017; Duan
et al. 2020; Jing et al. 2020). To fully resolve particle collisions, the DEM simulation time
step is tc/50 (Silbert et al. 2001; Duan & Feng 2017, 2019). The particle contact model
(Cundall & Strack 1979; Shäfer, Dippel & Wolf 1996; Weinhart et al. 2020) is detailed in
the supplementary material are available at https://doi.org/10.1017/jfm.2021.342.

Flow conditions and particle properties differentiated by subscript i (i = l for large
particles and i = s for small particles regardless of their densities) are listed in table 1.
For a given species, the particle diameter di is uniformly distributed with a variance
of ±0.1di to reduce ordering, except where noted. A well-mixed bidisperse stream of
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W 0.4, 0.5 m
μ 0.4
e 0.2
tc 0.5 ms
ĉl 0.2–0.8
q 15–20 cm2 s−1

Rd = dl/ds 1–2 (dl = 3 mm)
Rρ = ρl/ρs 0.25–4 (ρs = 1 g cm−3)

Table 1. Simulation parameters.

particles with a feed concentration of large particles, ĉl, (and corresponding small particle
feed concentration ĉs = 1 − ĉl) is continuously fed into the system from a relatively low
height of 4 cm above the rising free surface to reduce bouncing in a 3.3 cm (11dl) long
feed zone (Wf ). Based on volume conservation, the free surface rises at a vertical rise
velocity of vr = Q/WT , where Q is the volumetric feed rate. The flowing layer length is
L = W/ cos(α), and an effective 2-D feed rate is defined as q = Q/T .

In a reference frame rising with the flowing layer, the origin of the coordinate system is
located on the free surface at the front wall at the downstream (right) edge of the vertical
feed region with x, y and z oriented in the streamwise, spanwise and normal directions,
respectively. To characterize the flow, the velocity field, uuu = ux̂ + vŷ + wẑ (noting that
no subscript is used for variables representing the mixture) and species concentration, ci,
are calculated from spatial and temporal averages of simulation data in the flowing layer.
To compute the spatial average, we use a volume-weighted binning method (Fan et al.
2013) with right cuboid bins oriented with two faces parallel to the free surface, two faces
perpendicular to the free surface and two faces parallel to the sidewalls. Each bin has a
streamwise length of 1 cm (3.33dl) and a height (normal to the free surface) of 1 mm
(0.33dl). Since particles can overlap multiple bins, the partial volumes of particles are
applied to the appropriate bin for averaging purposes. As such, the species concentration
is defined as

ci =

Ni∑
k∈i

Vk

N∑
k=1

Vk

, (2.1)

where Ni and N are the number of particles of species i and the total number of particles
in the bin, respectively and Vk is the volume of particle k in the bin. The mean velocity of
species i is calculated as the sum of volume-weighted velocities,

uuui =

Ni∑
k∈i

uuukVk

Ni∑
k∈i

Vk

, (2.2)

where uuuk is the vector velocity of particle k. The bulk flow velocity, uuu, is determined as uuu =∑
uuuici. To perform the temporal average, the concentration and velocity values of each
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bin are averaged over 5 s at intervals of 0.01 s after flow reaches steady state. Note that an
alternative expression for the bulk velocity, uuu = ∑

uuuiρici/
∑

ρici, can be calculated based
on the sum of mass-weighted velocities instead of volume-weighted velocities in (2.2). In
previous research utilizing the framework of mixture theory (Gray & Ancey 2015), the
segregation velocity was derived from mass and momentum conservation, which requires
an evolving bulk density along with mass-weighted mean velocities for density disperse
mixtures. Here we assume that volume is approximately conserved, which is equivalent
to assuming a nearly constant volume fraction. This allows us to use uuu = ∑

uuuici instead
of mass-weighted velocities. And because heap flow kinematics are nearly independent of
particle size and density and species concentration as shown in § 4, it is possible to use a
volume-based transport equation to model the segregation.

In quasi-2-D bounded heap flow, segregation mainly occurs in the z-direction (normal to
the free surface), as noted in previous studies (Fan et al. 2014; Schlick et al. 2015b; Xiao
et al. 2016; Deng et al. 2018). Furthermore, an advection–diffusion transport equation
has been successfully used to model the segregation (Bridgwater et al. 1985; Dolgunin &
Ukolov 1995; Gray 2018; Umbanhowar et al. 2019). Within this continuum framework, the
concentration of species i can be expressed as

∂ci

∂t
+ ∇ · (uuu∗

i ci) = ∇ · (D∇ci). (2.3)

Here, the local collisional diffusion coefficient D is a scalar, although in general it is a
tensor. This approximation is accurate for flows with a single dominant shear direction
(Umbanhowar et al. 2019). Here, uuu∗

i represents the diffusionless mean velocity of species
i, which differs from the overall mean velocity, uuui, determined from simulation according
to (2.2). Since there is no net motion of species in the spanwise (y) direction (i.e.
zero spanwise velocity vi = 0), the other velocity components of species i are written
most generally as u∗

i = u + useg,i and w∗
i = w + wseg,i, where useg,i and wseg,i are the

components of the gravity-driven segregation velocity of species i relative to the mean
flow velocity. However, for the quasi-2-D bounded heap and most other free surface flows,
useg,i � u so that u∗

i can be accurately approximated by u (Deng et al. 2018). With these
assumptions, (2.3) can be written as

∂ci

∂t
+ ∂uci

∂x
+ ∂(w + wseg,i)ci

∂z
= ∂

∂x

(
D

∂ci

∂x

)
+ ∂

∂z

(
D

∂ci

∂z

)
, (2.4)

or, rearranging, as

∂ci

∂t
+ ∂uci

∂x
+

∂

[
wci + wseg,ici − D

∂ci

∂z

]
∂z

= ∂

∂x

(
D

∂ci

∂x

)
. (2.5)

When the normal component of flux for species i is measured from DEM simulation,
it is the entire quantity within the brackets of (2.5) that is measured. In other words,
the measured normal flux Φi = wici is driven by three distinct mechanisms: advection
(Φadv,i = wci), segregation (Φseg,i = wseg,ici) and diffusion (ΦD,i = −D∂ci/∂z), and can
be written as

wici = wci + wseg,ici − D
∂ci

∂z
. (2.6)

Previous studies indicate that ΦD,i is typically small compared with the segregation flux,
Φseg,i (i.e. ΦD,i < 0.1Φseg,i) for size (or density) only segregation (Jones et al. 2018).
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As such, the segregation velocity is expressed simply as wseg,i ≈ wi − w (Fan et al. 2014;
Schlick et al. 2015a; Jones et al. 2018). However, for the combined size and density
segregation considered here, the opposing effects of size and density differences can
result in very weak segregation. As a result, the concurrent concentration gradient driven
diffusion flux, ΦD,i, can be similar in magnitude to the segregation flux, Φseg,i. Thus, it
is necessary to include all three terms when calculating the segregation velocity. Using
(2.1) and (2.2), wi, w and ci can be readily calculated from simulations, so the segregation
velocity can be determined as

wseg,i = wi − w + 1
ci

D
∂ci

∂z
. (2.7)

Like all the other variables on the right-hand side of (2.7), the diffusion coefficient D
is determined directly from simulation as the mean-square displacement (MSD) in the
normal direction of every particle in a bin over a period Δt (Utter & Behringer 2004;
Wandersman, Dijksman & Van Hecke 2012; Fan et al. 2015),

MSDz(Δt) = 1
N

N∑
k=1

[zk(t + Δt) − zk(t) − L(Δt)]2. (2.8)

Here, zk(t + Δt) − zk(t) is the displacement of particle k in the bin in a time interval Δt,
and L(Δt) is the mean cumulative displacement of particles in the bin due to the bulk
flow in the z-direction. The MSDz values of each bin for Δt are averaged over 200 distinct
times t at intervals of 0.25 s, consistent with the 5 s sampling window for calculating
the concentration and velocity fields. Similar to previous results (Fan et al. 2015), MSDz
data are linear in Δt for 0.05 s < Δt < 0.3 s, indicating diffusive behaviour. The diffusion
coefficient D is then estimated as one half the slope of a linear fit of MSDz versus Δt (Utter
& Behringer 2004; Fan et al. 2015). Further details are provided in the supplementary
material.

3. Segregation velocity

To illustrate the interplay between size and density, consider a bidisperse mixture of
particles with Rd = 2 and Rρ = 4. Since in this case the large particles are also heavier
particles, size and density segregation oppose one another. It is also a case in which the
rising and sinking behaviour of each species has been shown to depend on the relative
concentration of the two species based on experiments in a rotating tumbler (Alonso
et al. 1991). In their experiments, LH particles segregate to the core of the tumbler bed
at low global (mixture) concentrations and segregate to the periphery of the bed at high
concentrations.

Figure 2 shows the analogous situation in DEM simulations of the same bidisperse
particle mixture in bounded heap flow. Varying the feed concentration of large particles
ĉl significantly alters the composition of the mixture deposited on the heap just as it does
for the rotating tumbler experiments. Specifically, LH particles deposit in the upstream
portion of the heap for low feed concentrations (analogous to segregating to the core of
the tumbler) and deposit in the downstream portion of the heap at high feed concentrations
(analogous to segregating to the tumbler periphery). As is shown below in more detail, this
reversal in behaviour occurs because the local segregation flux of the two species depends
on their local concentrations. This dependence of the segregation flux on concentration
is different from that in either S- or D-systems. In S-systems, the greatest segregation
flux occurs for large particle concentrations of approximately 0.6 for this diameter
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(a) (b) (c)

Figure 2. Heap flow segregation for large particle feed concentration ĉl of (a) 0.2, (b) 0.5 and (c) 0.8. Large
heavy particles (red, dl = 3 mm, ρl = 4 g cm−3) sink while small light particles (blue, ds = 1.5 mm, ρs = 1 g
cm−3) rise for ĉl =0.2, as buoyancy overcomes percolation. In contrast, for ĉl =0.5 and 0.8 segregation reverses
as percolation dominates over buoyancy. Here, Rd = 2, Rρ = 4, W = 50 cm, q = 20 cm2 s−1.

ratio (Rd = 2). Likewise, for D-systems, the greatest segregation flux occurs for heavy
particle concentrations of approximately 0.4 for this density ratio (Rρ = 4) (Jones et al.
2018). For the cases shown in figure 2 the direction of the segregation flux depends on
concentration. The LH particles segregate downward at low concentrations and segregate
upward at high concentrations. Hence, in figure 2(a) the low concentration LH particles
segregate downward and deposit along with fewer SL particles on the upstream portion
of heap until LH particles are depleted, leaving only SL particles. In figure 2(c), the high
concentration LH particles segregate upward so that the SL particles deposit along with
fewer LH particles on the upstream portion of the heap until the SL particles are depleted.
Figure 2(b) shows an intermediate case where percolation is only slightly stronger than
buoyancy.

To quantify the segregation for the cases shown in figure 2, it is necessary to use (2.7)
to find the segregation velocity, which requires knowledge of ci, wi, w and D found as
functions of position using (2.1), (2.2) and (2.8). Segregation occurs in the surface layer
having length L = W/ cos(α) and local thickness δ(x), which is defined here as the depth
at which the streamwise velocity is 1/10th its surface value, i.e. u(x, −δ) = 0.1u(x, 0).
The location of the flow surface at each streamwise position is estimated based on a cutoff
value of solids fraction φc = 0.35 (Fan et al. 2013) to exclude bouncing particles near the
free surface.

The streamwise velocity, surface-normal velocity, species-specific velocity relative to
the bulk, large particle concentration and collisional diffusion coefficient, which are
needed to calculate and model the segregation, are shown in figure 3. The rectangular
region above the white line corresponds to the flowing layer shown schematically in
figure 1. Figure 3(a) shows the local streamwise velocity, which is greatest at the surface
and decreases moving downstream and deeper in the flow. The local flowing layer depth,
δ(x), shown by the dashed curve, remains almost constant for most of the length of flowing
layer, except near the downstream bounding endwall where it decreases slightly. Although
a varying flowing layer thickness can be implemented in the continuum segregation model
(Isner et al. 2020a), a constant flowing layer depth δ = 〈δ(x)〉 is assumed later in this
paper, as the spatial average is easier to implement and provides sufficient accuracy to
successfully apply the theory for the quasi-2-D heap flows considered here (Fan et al.
2014; Xiao et al. 2016). Figure 3(b) shows that the normal velocity at the bottom of the
flowing layer in the rising reference frame is opposite and approximately equal to the
rise velocity of the surface of the heap, vr cos(α) = 0.35 cm s−1, except for the upstream
portion near the feed zone, where the kinematics are affected by falling particles from
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Figure 3. Spatial distributions of various quantities for an example simulation with Rd = 2, Rρ = 4, ĉl = 0.5
(i.e. data from figure 2b rotated by repose angle α). Average fields of (a) streamwise velocity, (b) normal
velocity (note that particles deposited on the bed have a velocity of −vr cos α = −0.35 cm s−1 due to
the rising reference frame), relative normal velocities of (c) large and (d) small particles, (e) large particle
concentration and ( f ) diffusion coefficient. Dashed curve in panel (a) represents δ(x) using the criterion
u(x, −δ) = 0.1u(x, 0). Region above solid white line in panels (a– f ) corresponds to the constant depth flowing
layer defined by the average flowing layer depth δ = 〈δ(x)〉.

the vertical feed. Figure 3(c) shows that large particles rise to the surface as their normal
relative velocity is positive over most of the flowing layer. The normal relative velocity of
the large particles is zero for the downstream portion of the flowing layer corresponding
to the region devoid of small particles and hence no relative velocity between the large
particles and the bulk flow. On the other hand, the relative velocity is negative for small
particles shown in figure 3(d) except very near the downstream endwall where no small
particles are present. In other words, in the limit of ci = 0, the definition of segregation
velocity loses its physical meaning. To account for this deficiency in the mathematical
description, only data for 0.01 < ci < 0.99 are considered in the later analysis. The
concentration of large particles, shown in figure 3(e), is close to 1 at the surface of the
flowing layer and downstream where the entire flowing layer thickness is made up of large
particles. As shown in figure 3( f ), the diffusion coefficient is largest near the surface in
the upstream portion of the flowing layer and decreases moving downstream and deeper
into the flowing layer.

The local values of the velocities, concentrations and diffusion coefficients shown in
figure 3 are used to determine the local segregation velocity using (2.7) for different values
of the feed concentration of large particles, ĉl. An example of the resulting dimensionless
segregation velocity data scaled by ds and shear rate, γ̇ , plotted against the concentration
of the other species is shown in figure 4 for Rd = 2 and Rρ = 4. Different colours in
figure 4(a) represent simulations with different values for ĉl, which ensures a full range of
local concentrations (0.01 < ci < 0.99) in the plot. Because the data come from different
depths and positions along the flowing layer of the bounded heap, a wide range of shear
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Figure 4. Segregation velocity dependence of large heavy (◦) and small light (×) particles on local
concentration of the other species, 1 − ci, for Rd = 2 and Rρ = 4. (a) Local segregation velocity for different
feed concentrations ĉl (symbol colours) calculated in each bin throughout the entire flowing layer averaged over
500 frames corresponding to 5 s of simulated time. (b) Data from panel (a) averaged over 0.02 increments of
1 − ci to reduce scatter and more clearly show the data trend. Error bars represent the standard deviation for
each increment of 1 − ci. Solid curves are fits to (1.3).

rates, concentrations and segregation velocities are represented in the figure. Although
there is substantial scatter in the data due to the stochastic nature of granular flows, it is
clear that there are two distinct curves represented in figure 4(a), an upper one for the
LH particles and a lower one for the SL particles. It is also clear that wseg,l (upper set
of data) changes from positive (upward segregation) to negative (downward segregation),
depending on concentration. For 1 − cl < 0.6 (circles at the top left of figure 4a) wseg,l
is positive, indicating that LH particles tend to rise in the flowing layer for small values
of 1 − cl = cs; for 1 − cl > 0.6 (circles at the top right of figure 4a) wseg,l is negative,
indicating that LH particles sink deeper in the flowing layer. Results are analogous for
SL particles, i.e. for small values of 1 − cs = cl (1 − cs < 0.4) SL particles rise, albeit
at a smaller segregation velocity than LH particles, while for larger values of 1 − cs, SL
particles sink. The overlap between the data shown in figure 4(a) for separate simulations
with seven different feed concentrations indicates the robustness of the results.

To more clearly show trends, figure 4(b) averages the data in figure 4(a) over 0.02
increments of 1 − ci. Here the small positive segregation velocity for both species at small
values of 1 − ci and the negative segregation velocity for both species at large values of
1 − ci is evident. The segregation velocity of both species is zero at 1 − ci = 0, which
corresponds to the limit of no particles of the other species being present (monodisperse
flow with no segregation possible). However, the segregation velocity as 1 − ci approaches
1 is finite, as would be expected since this corresponds to a very low concentration of
species i amongst many particles of the other species (a single intruder particle in the
limit). However, this low concentration leads to large variability in the measurement of
wseg,i and correspondingly large error bars.

Returning to the expressions for the segregation velocity discussed in § 1, it is clear
that the linear relation of (1.1) is inappropriate for the data in figure 4, even though it
works well under many other circumstances, particularly for mixtures of particles having
similar concentrations (Schlick et al. 2015a; Xiao et al. 2016). However, since previous
studies have shown that the segregation velocity can be more accurately modelled using
a quadratic polynomial, (1.3) (Gajjar & Gray 2014; van der Vaart et al. 2015; Jones et al.
2018), particularly for values of 1 − ci near 0 or 1, we consider that form here. Figure 4(b)
shows that fits to (1.3) match well with the segregation velocity data. In particular, the
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ĉl = 0.7
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Figure 5. Segregation flux dependence of large heavy (◦) and small light (×) particles on local concentration
of large heavy particles, cl, for Rd = 2 and Rρ = 4. (a) Local segregation flux for different feed concentrations
ĉl (symbol colours) calculated in each bin throughout the entire flowing layer and averaged over 500 frames
corresponding to 5 s of simulation time. (b) Data from panel (a) averaged over 0.02 increments of cl. Error
bars represent the standard deviation for each averaging interval of cl. Red dashed curves are quadratic fits of
(3.1) using only the data for large heavy particles (◦) in the plot, while black solid curves (which appear dashed
because they are behind the red dashed curves) are fits to the data for small light particles (×) in the plot.

fitted curves intersect the dashed horizontal line corresponding to wseg,i = 0 at cl ≈ 0.35
and cs ≈ 0.65. At these concentrations, which sum to 1 as they should, particles no longer
segregate, apparently due to the balance between percolation and buoyancy.

The measurement uncertainty for the segregation velocity increases with 1 − ci resulting
in a mismatch between the data and the curve for large 1 − ci shown in figure 4. To reduce
uncertainty, particularly near the single particle intruder limit, the segregation velocity
data in figure 4 can be recast as the species segregation flux Φseg,i = wseg,ici. As is
evident for both the entire data set in figure 5(a) and the averaged data in figure 5(b), the
two measured species segregation fluxes are always equal and opposite at any particular
local value of the large particle concentration, cl, as expected. It is also evident that the
segregation flux direction reverses at cl = 0.35 where the segregation velocity in figure 4
is zero. The data in figure 5 are well-fitted by the quadratic-in-concentration segregation
velocity given in (1.3), which corresponds to a cubic in ci segregation flux,

Φseg,i = dsγ̇ ci[Ai + Bi(1 − ci)](1 − ci), (3.1)

where Ai and Bi are coefficients that we will show depend on both the size and density
ratios. Equation (3.1) automatically satisfies the requirement that the flux is 0 at cl = 0
and 1.

Although (3.1) can be made to fit the data in figure 5 quite well, it is a phenomenological
model that lacks a physical basis. An alternative approach for considering the segregation
is to solve the momentum equation supplied with species-specific stresses and an
interspecies drag (Gray & Thornton 2005) such that the reversed segregation flux can be
justified from the standpoint of force balance. However, both approaches require empirical
fits, either of the coefficients Ai and Bi in the segregation flux model (3.1) or through the
force models related to species-specific stresses (Tunuguntla et al. 2017) or drag (Duan
et al. 2020) in momentum-based models. In fact, Gray & Ancey (2015) assume a simple
stress partitioning function and a linear interspecies drag and mathematically prove that the
segregation can reverse direction for different values of concentration in SD-systems. This
is different from the other momentum-based models (Marks et al. 2012; Tunuguntla et al.
2014), in which the segregation direction is determined purely by size and density ratios.
Hence, neither of these two models account for dependence of the segregation direction
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on concentration that is inherent in the data in figure 5 and later figures in this paper. An
extended discussion of why these models cannot account for concentration dependence
is included in Appendix A. On the other hand, though an explicit expression for the
segregation flux as a function of size and density ratios is not given, the model of Gray
& Ancey (2015) utilizes a segregation flux that is quadratic in concentration. Although
there is qualitative similarity between the quadratic segregation model in (3.1) and the
segregation model by Gray & Ancey (2015) in certain parameter regions, their model does
not quantitively capture the observed concentration dependent segregation, as described
in detail in Appendix A. In addition, their model does not account for the asymmetric
concentration dependence of size segregation (Gajjar & Gray 2014; van der Vaart et al.
2015; Jones et al. 2018).

Of the four empirical coefficients of the model described by (3.1) (equivalently (1.3)),
Al, Bl and As, Bs (two for each species), only two are independent due to the constraint of
volume conservation at all local concentrations, i.e. Φseg,l + Φseg,s = 0. For example, if
Al and Bl are determined for the large species, then the coefficients for the small species
are As = −(Al + Bl) and Bs = Bl. Consequently, although there are two sets of data in
figure 5(b), either curve fit can be used to determine the values of Ai and Bi for the other
curve fit. For example, the segregation flux data for large particles in figure 5(b) (red
circles) are used to find Al and Bl first, and then As and Bs are calculated based on volume
conservation. As shown in figure 5(b), the dashed red curves, which are based on the large
particle data, also agree well with the small particle data. Fitting (3.1) to small particle flux
instead of large particle flux results in nearly identical fits as is evident in figure 5(b) where
the solid black curves (appearing as dashed because they are plotted behind the overlying
red dashed curves) are fits to the small particle flux. That the segregation velocities for
large and small particles are calculated independently in each bin in the DEM simulation,
and that the curves for the segregation fluxes match not only the data but also each other,
whether calculated from small or large particle data, demonstrates the robust nature of the
approach for modelling the segregation ((1.3) and (3.1)) and calculating wseg,i, ci, γ̇ and D
as described in § 2.

Having shown that the segregation direction is concentration dependent for a specific
pair of size and density ratios (Rd = 2, Rρ = 4), we now illustrate how the segregation
flux varies with concentration for different size and density ratios. Figure 6 shows four
different cases for four distinct (Rd, Rρ) pairs. The Rd = 1 and Rρ = 4 case in figure 6(a)
reduces to density only segregation, for which light particles rise and heavy particles sink.
Figure 6(a) also indicates that the heavy particle concentration is always less than 1 (no
data for cl > 0.94 in figure 6(a); here, subscript l refers to heavy particles in D-systems)
while the light particle concentration (1 − cl) reaches 1, consistent with previous studies
on plane shear flows for D-systems (Fry et al. 2019). This is likely caused by asymmetric
concentration dependence of density segregation in which a single heavy particle (cl ≈ 0)
can move through surrounding light particles but light particles get stuck among heavy
particles at low concentration (cl ≈ 1). Figure 6(b) shows an enhanced segregation case for
Rd = 2 and Rρ = 1/2, in which the particles quickly segregate and remain fully segregated
for most of the flowing layer. The measurement uncertainties in figure 6(b) are larger than
those of the other three cases, especially for 0.3 < cl < 0.7, because the strong segregation
reduces the number of data points in this concentration range.

Unlike the two ‘unidirectional’ segregation cases in figure 6(a,b) in which percolation
and buoyancy act in the same direction, percolation and buoyancy compete with each
other for Rd = 1.5 and Rρ = 4 in figure 6(c) and Rd = 2 and Rρ = 2 in figure 6(d).
In these cases, the segregation direction is concentration dependent. For Rd = 1.5 and
Rρ = 4 the overall segregation flux is small due to the near balance between the two
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Figure 6. Segregation flux data for large (◦) and small particles (×) averaged over 0.02 increments of cl
(subscript l refers to heavy particles for D-system in panel (a)) for different size and density ratios. Solid
curves are fits of (3.1) to the data for large particles (◦). Error bars represent the standard deviation for each
averaging interval of cl.

segregation mechanisms. For Rd = 2 and Rρ = 2 the concentration of LH particles at
which segregation flux reverses is approximately 0.2, and the two segregation mechanisms
are nearly balanced for cl ≤ 0.2, so particles remain mixed. As a result, simulation data
are only available for cl ≥ 0.2 in figure 6(d).

Similar to figure 5(b), fits to (3.1) accurately capture the segregation flux data for all
four cases in figure 6. The applicability of the segregation model for various size and
density ratios is demonstrated by the close agreement between the model predictions and
the segregation flux data for not only opposing segregation mechanisms in figure 6(c,d)
but also unidirectional segregation mechanisms in figure 6(b) or density only segregation
in figure 6(a).

To illustrate how density ratio alone affects segregation in SD-systems, fits of (3.1) to
the simulation data for Rd = 2 with Rρ varying from 1/4 to 4 are plotted in figure 7(a) (the
simulation data and error bars are omitted for clarity). The segregation flux for the two
species is always symmetric about Φseg,i = 0 due to volume conservation, and it increases
for both species with decreasing Rρ at all concentrations as would be expected as the
large particles become lighter. For Rρ < 1 the segregation is unidirectional regardless
of concentration because the particle size and density segregation mechanisms are in
the same direction. On the other hand, reversed segregation is possible when the two
segregation mechanisms oppose each other for Rρ > 1, and in such cases the concentration
at which the segregation flux reverses increases with Rρ . In addition, the segregation flux is
nearly independent of density ratio as cl approaches 1 for Rρ ≥ 1, indicating that buoyancy
has little influence on segregation flux near the single SL intruder particle limit.

Figure 7(b) plots similar results for constant density ratio Rρ = 4 and different values
of the size ratio Rd, where the situation is more complicated. For similar size particles
(Rd near 1), the flux decreases as Rd increases until the flux reverses between Rd = 1.1
and Rd = 1.3. Increasing Rd further increases the magnitude of the flux so that by Rd =
2 the upward flux of the LH particles is substantially larger than the downward flux of
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Figure 7. Segregation flux versus large particle concentration, cl, from fits of (3.1) to segregation flux data from
simulations with (a) Rd = 2 and various Rρ and (b) Rρ = 4 and various Rd . Red–teal colour pairs represent
simulations with different combinations of Rd and Rρ . Simulation data and error bars as plotted in figures 5
and 6 are omitted for clarity.

heavy particles of the same size (Rd = 1). The curves overlap for cl < 0.1, indicating that
the segregation flux is nearly independent of size ratio (i.e. percolation is negligible in
situations approaching the single LH particle limit). Similar behaviour is evident for the
SL particles but in the opposite direction.

As expected, segregation goes to zero at the limits of cl = 0 and cl = 1. One might
hypothesize that the segregation behaviour of a SD-system at these two limits is similar to
that of a S-system of the same size ratio or a D-system of the same density ratio. To test
this hypothesis for the segregation behaviour at the two concentration limits, figure 8 plots
segregation flux of large particles for a S-system of Rd = 2, heavy particles for a D-system
of Rρ = 4, and LH particles for a SD-system of Rd = 2 and Rρ = 4. Solid curves are fits
to the simulation results and symbols represent the segregation flux data for LH particles.
The segregation flux of LH particles at cl � 0.2 (blue coloured area) nearly equals that of
heavy particles in the D-system having the same Rρ , indicating that buoyancy dominates.
Likewise, for values of cl � 0.8 (red coloured area) the segregation flux of LH particles
matches that of large particles in the S-system having the same Rd, indicating percolation
dominates at this limit. Between these two limits, for 0.2 � cl � 0.8, the LH curve deviates
substantially from both the Rd = 2 curve and the Rρ = 4 curve. One might speculate that
the combined effect of size and density is simply a linear combination of the size effect
and the density effect. To test this, consider the dashed curve which represents the sum of
segregation fluxes for the S- and the D-systems. The mismatch between the data and the
dashed curve clearly demonstrates that segregation model in an SD-system is not a simple
linear combination of that for the corresponding S- and D-systems.

Figures 4–8 show that the quadratic functional form of the segregation velocity in (1.3)
and, equivalently, the cubic functional form of segregation flux in (3.1) are generally
applicable to different combinations of size and density ratios. The segregation behaviour
can be predicted for arbitrary Rd and Rρ combinations once the model coefficients Ai
and Bi are known. To more fully characterize the dependence of Ai and Bi on particle
size and density ratios, 126 simulations were performed (three simulations per case)
for Rd = 1, 1.1, 1.3, 1.5, 1.8, 2 and Rρ = 1/4, 1/3, 1/2, 1, 2, 3, 4. Here we focus
on Rd ≤ 2 because outside this range the segregation velocity in S-systems changes
its dependence on Rd, suggesting the possibility of a change in the size segregation
mechanism (Golick & Daniels 2009; Schlick et al. 2015a). Furthermore, computational
requirements increase substantially with increasing size ratio because of the increasing
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intraspecies variation in particle diameter in contrast to simulations with 10 % size polydispersity (open
symbols). Error bars represent 95 % confidence bounds based on the fit to the data.

burden of contact detection with increasing Rd. Figure 9 plots fitted values of the
corresponding coefficients Al and Bl. Independent of Rρ , Al increases with Rd as shown
in figure 9(a). For fixed Rd, Al decreases with increasing Rρ . Figure 9(b) shows that
Bl becomes more negative with increasing Rd, and in all cases the magnitude of Bl is
smallest near Rρ = 1. Using an ad hoc approach described in the supplementary material,
we provide empirical expressions for Al and Bl for 1 ≤ Rd ≤ 2 and 1 ≤ Rρ ≤ 4 (Al =
0.35e−2Rρ + f1 and Bl = (0.43e−0.2Rρ − 0.2)Rd − Al + f2, where f1 = 0.4Rd − 0.4474
and f2 = −0.1342R2

d + 0.3514Rd − 0.3646). As noted earlier, finding As and Bs using
small particle data should be equivalent to finding Al and Bl using large particle data
due to the segregation flux of one being the negative of the segregation flux of the other.
Indeed, the values for As and Bs are within 5 % of those for Al and Bl for all of the cases
considered in figure 9.
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Modelling combined size and density segregation

Though the segregation coefficients Al and Bl are derived from DEM simulations with
heap width W = 0.5 m and flow rate q = 20 cm2 s−1, they are independent of global flow
configurations. Consequently, Al and Bl are generally applicable to any free surface flow
as they are determined for each combination of Rd and Rρ from a local flow parameter,
specifically the local segregation velocity, over a wide range of values for the local shear
rate γ̇ and local particle concentration ci.

One further consideration is that for the simulations up to this point, each particle
species has a ±10 % variation in particle diameter, which is a common approach in
DEM simulations to avoid ordered packing structures that can occur for identically sized
particles. However, variation in particle size can create variations in segregation properties,
particularly for Rd close to 1 because the size distributions for the two species may overlap
(Gao et al. 2021). To assess the impact of a narrow range of particle sizes in combination
with differences in particle densities, simulations are also conducted for particle species
of uniform size (filled data points in figure 9 for Rd = 1 and 1.5). As shown in figure 9, the
distribution of particle sizes has no effect on the resultant model coefficients for Rd = 1.5.
However, for Rd = 1, the magnitude of Al for two particle species of uniform size is less
than that for species with a narrow range of particle diameters, while Bl remains nearly the
same, indicating that the slight polydispersity promotes segregation for simulations where
Rρ /= 1 as expected.

To more clearly convey the physical implications of the fitting parameters, consider
that the segregation flux model in (3.1) is cubic with fixed zeros (roots) at cl = 0 and
cl = 1 independent of Al and Bl. A third zero exists at cl = 1 + Al/Bl which is physical
when 0 ≤ 1 + Al/Bl ≤ 1. Figure 10 plots 1 + Al/Bl as a function of Rρ for all cases
except Rd = 1, 1.1, because those results are affected by size dispersity of the two
species. For mixtures with 1 + Al/Bl ≤ 0, segregation flux of large particles, Φseg,l from
(3.1), is always greater than zero regardless of species concentration, indicating that the
segregation is unidirectional. However, for 0 < 1 + Al/Bl < 1, the segregation direction
is concentration dependent, with the segregation direction reversing at an equilibrium
concentration, cl,eq = 1 + Al/Bl. It is evident that unidirectional segregation always occurs
for Rρ � 1.8, while the direction of segregation is concentration dependent for Rρ � 1.8.

To validate this claim, the rise–sink transition predicted in figure 10 is compared
with free surface flow experiments in a rotating tumbler in which LH tracer particles
(cl ≈ 0) with Rd ≈ 1.5, 1.8 and 2.0 maintain an intermediate radial position in the
flow for Rρ ≈ 1.8 (Félix & Thomas 2004). This corresponds to the size and density
ratios where curves for Rd ≈ 1.5, 1.8 and 2.0 intersect the 1 + Al/Bl = 0 (cl,eq = 0)
horizontal line in figure 10. All three of these experimental data points for a rotating
tumbler (inverted triangles, one of which is hidden behind the others) are indeed on the
1 + Al/Bl horizontal line at Rρ ≈ 1.8, thereby confirming the predicted transition from
unidirectional segregation to a concentration dependent segregation direction. Similar
experiments for mixtures of large glass and small plastic particles in a tumbler with
Rd ≈ 1.3 and Rρ ≈ 2.4 (Alonso et al. 1991) show that the segregation direction changes
at cl,eq = 0.31, and, again, a close match between the data point (green star) and the
curve (green) is observed. However, a mixture of large steel and small glass particles with
Rd ≈ 2.3 and Rρ ≈ 3.1 (Alonso et al. 1991) has an equilibrium concentration at which the
segregation direction changes of cl,eq = 0.65 (blue star), which is significantly larger than
the predicted value (cl,eq ≈ 0.25) for Rd = 2. To further test the model for this particular
combination of particle size and density ratios, a few simple experiments with similar
large steel and small glass particles (Rd ≈ 2 and Rρ ≈ 3) are conducted in a bounded heap
flow (see Appendix B) similar to our previous experiments (Fan et al. 2012). Based on
these experiments, it is clear that the concentration at which segregation changes direction
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Figure 10. Plot of 1 + Al/Bl versus density ratio Rρ for various Rd . Uncertainties are calculated as√
(ΔA/A)2 + (ΔB/B)2(A/B). For mixtures with 0 < 1 + Al/Bl < 1 (shaded area), segregation reverses at an

equilibrium concentration cl,eq = 1 + Al/Bl where Φseg,l = 0 (equation (3.1)). Filled inverted triangles for
Rd ≈ 1.5, 1.8 (hidden behind the blue triangle for Rd ≈ 2), 2 (Félix & Thomas 2004) and stars for Rd ≈ 1.3
and 2 (Alonso et al. 1991) represent experimental results in rotating tumblers. Filled diamond is from heap flow
experiments in Appendix B.

is between 0.11 and 0.26 (blue diamond), which is consistent with the predicted value of
0.25.

A practical concern for many industrial situations is assuring that a mixture of two
species of particles remains mixed. Figure 7 shows that mixtures of particles having
certain combinations of size and density ratios have a segregation flux of zero at the
equilibrium concentration and therefore remain mixed. The question is how to use this
information to intentionally design the particles making up the mixture to minimize
segregation and remain mixed? In many practical situations the material of each particle
species is fixed, thereby fixing the density ratio. Likewise, the relative concentrations of
the two species is typically specified to maintain certain properties of the overall mixture.
However, frequently the sizes of the particles of each species can be altered as desired.
This opens the possibility of specifying particle sizes to avoid segregation at a certain
mixture concentration.

The dependence of the equilibrium concentration cl,eq on particle size and density ratios
is shown in figure 11, where isoconcentration curves for values of cl,eq = 1 + Al/Bl are
interpolated based on values of Al and Bl for 77 different combinations of size and density
ratios. The curves are cubic fits to the interpolated data forced to pass through (Rρ = 1,
Rd = 1), where segregation is necessarily zero. Particles remain mixed along the curve for
cl = cl,eq for the corresponding Rd and Rρ . Large particles rise if cl is greater than cl,eq,
whereas if cl is less than cl,eq large particles sink. Segregation is unidirectional for Rd
and Rρ combinations in the hatched regions of figure 11. For Rd and Rρ combinations to
the left of cl,eq = 0, large particles rise, while large particles sink for combinations below
cl,eq = 1, regardless of the mixture concentration.

To demonstrate the practical use of figure 11, consider a 20 : 80 mixture of large steel
and small glass particles (cl = 0.2) with Rd = 2 and Rρ = 3. The steel particles sink
because the mixture concentration is less than the interpolated equilibrium concentration
of cl,eq ≈ 0.25 at this combination of Rd and Rρ . On the other hand, large steel particles
would rise if their concentration is greater than cl,eq ≈ 0.25.
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Figure 11. Equilibrium (no segregation) concentration of large particles cl,eq as a function of particle size and
density ratios. Symbol (◦) diameter is proportional to cl,eq in the range 0 to 1. Isoconcentration curves for
values of cl,eq are interpolated between data points. Particles stay mixed along the curve for cl = cl,eq for the
corresponding Rd and Rρ . Large particles rise if cl is greater than cl,eq, whereas if cl is less than cl,eq large
particles sink. Segregation is unidirectional (hatched regions) for cl,eq = 0 (large particles rise) and cl,eq = 1
(large particles sink).

Perhaps more importantly, figure 11 can be used to intentionally design a particle system
so that the particles remain mixed by specifying the optimal size ratio Rd to minimize
segregation (i.e. optimize the particles remaining mixed) for any given density ratio Rρ

and desired mixture concentration. For example, a 50 : 50 mixture (cl = 0.5) of small
glass and large steel particles, corresponding to a density ratio Rρ = 3, requires a size ratio
of Rd ≈ 1.35 to minimize segregation according to figure 11. A more detailed description
of this approach is described in a separate publication (Duan, Umbanhowar & Lueptow
2021).

Note that for low concentrations of LH particles (cl < 0.3), the segregation behaviour
is more complicated than at higher concentrations as the isoconcentration curves are
non-monotonic. For example, to minimize segregation for a mixture with Rρ = 2 and
cl = 0.1, there are two size ratios (i.e. Rd ≈ 1.4 and 2) for which the particles remain
mixed. This is consistent with previous studies on intruder particles under uniform shear,
in which the lift-like force varies non-monotonically with size ratio having a maximum
value near Rd = 2 (Jing et al. 2020).

4. Continuum modelling of segregation

Previous studies show that a segregation velocity model combined with a transport
equation can predict the segregation of an S- or D-system in quantitative agreement with
experiments and simulations for different flow geometries (Wiederseiner et al. 2011; Fan
et al. 2014; Schlick et al. 2015b; Xiao et al. 2016, 2019; Isner et al. 2020b; Barker et al.
2021). With the quadratic segregation velocity model presented here ((1.3) and (3.1)), we
extend this approach to SD-systems and compare the model predictions with simulation
results for a range of bidisperse heap flows. This also further validates the coefficient
values Ai and Bi determined in § 3, since the model predictions are compared with different
flows than those from which Ai and Bi are determined.

Similar to previous studies (Fan et al. 2014), we assume that flow kinematics
and segregation are uncoupled and apply a modified advection–diffusion equation to
predict the segregation of bidisperse granular heap flows like that shown in figure 1.
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Rearranging (2.4), utilizing conservation of volume, and noting that diffusion is significant
for segregation only in the normal direction (Fan et al. 2014), results in

∂ci

∂t
+ u

∂ci

∂x
+ w

∂ci

∂z
+ ∂

wseg,ici

∂z
= ∂

∂z

(
D

∂ci

∂z

)
. (4.1)

The transient term ∂ci/∂t is zero in a reference frame rising with the surface for the steady
state heap flow segregation considered here, and the segregation velocity wseg,i is given by
(1.3). Previous studies of quasi-2-D heap flow kinematics (Fan et al. 2013) show that the
streamwise velocity in the flowing layer is well approximated by

u(x, z) = kq
δ(1 − e−k)

(
1 − x

L

)
ekz/δ. (4.2)

Here, k is a scaling constant set to ln(10) ≈ 2.3, so that u(x, −δ) = 0.1u(x, 0), consistent
with the definition for δ earlier in this paper. Based on (4.2) and the continuity equation
the normal velocity is (Fan et al. 2013)

w(z) = q
L(1 − e−k)

(ekz/δ − 1). (4.3)

Equations (4.2) and (4.3) are for the bulk flow and are independent of the local
concentration. These functional forms have been validated by experiments and simulations
for size (Fan et al. 2013) and density (Xiao et al. 2016) bidisperse granular materials in
quasi-2-D bounded heap and should be readily extended to particle mixtures that differ
in both size and density. We demonstrate the validity of this assumption for an example
SD-disperse mixture with Rd = 2, Rρ = 4 and ĉl = 0.5 (see supplementary material).
Note that other studies have used the μ(I)-rheology model to determine the flow field
analytically or numerically (Tripathi & Khakhar 2013; Barker et al. 2021). However,
applying the μ(I)-rheology model requires determining additional fitting parameters. In
addition, for the heap flows considered here the local rheology assumption may not be
appropriate (GDR-MiDi 2004), since modifications to the μ(I)-rheology model are needed
to account for the creeping zone and non-local effects.

In dense granular flows, experimental (Bridgwater 1980; Utter & Behringer 2004) and
computational (Fan et al. 2015; Cai et al. 2019; Fry et al. 2019) studies indicate that the
diffusion coefficient, D, is proportional to the product of the local shear rate and the square
of the local mean particle diameter,

D = Cdiff γ̇ d̄ 2, (4.4)

where d̄ = ∑
cidi and Cdiff is a constant. Values for Cdiff have been reported in the range

0.01 to 0.1 (Savage & Dai 1993; Hsiau & Shieh 1999; Utter & Behringer 2004; Fan et al.
2014, 2015; Cai et al. 2019; Fry et al. 2019). In this study, Cdiff is approximated as a
constant equal to 0.046 based on the diffusion coefficient data measured from the heap
flow simulations using (2.8). This value is also consistent with a previous study on uniform
shear flows, where Cdiff = 0.042 (Fry et al. 2019). We further note that although the
diffusion coefficient plays a role in the accurate determination of the segregation velocity
(2.7), the continuum segregation model is insensitive to the precise value (Fan et al. 2014).
The local shear rate γ̇ in (4.4) is calculated from the velocity profile in (4.2),

γ̇ = ∂u
∂z

= k2q
δ2(1 − e−k)

(
1 − x

L

)
ekz/δ. (4.5)

With the bulk velocity uuu, the segregation velocity wseg,i, and the diffusion coefficient
D determined, the continuum segregation model of (4.1) can be used to obtain the local
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concentration of each species in the flowing layer. Similar to previous studies (Fan et al.
2014; Schlick et al. 2015a; Xiao et al. 2016), (4.1) is non-dimensionalized using

x̃ = x
L

, z̃ = z
δ
, ũ = u

2q/δ
and w̃ = w

2q/L
. (4.6)

By substituting the segregation velocity (1.3) and the diffusion coefficient (4.4) into (4.1),
the non-dimensional transport equation during steady filling takes the form

ũ
∂ci

∂ x̃
+ w̃

∂ci

∂ z̃
+ ∂

∂ z̃
{ ˜̇γ [Ai + Bi(1 − ci)](1 − ci)ci} = ∂

∂ z̃

(
Cdiff ˜̇γ d̄2

dsδ

∂ci

∂ z̃

)
, (4.7)

where ˜̇γ = Ldsγ̇ /2q is the non-dimensional shear rate. Note that the local mean particle
diameter d̄ depends on local concentration, ci. Values of Al and Bl for the combination
of Rd and Rρ can be either found in figure 9 or estimated using expressions provided
in the supplementary material. Note that As = −(Al + Bl) and Bs = Bl due to volume
conservation.

Equation (4.7) is solved numerically as an initial-boundary value problem using the
pdepe solver in MATLAB with global parameters matching the simulation input (ds, dl,
q, ĉl) and measured directly from the simulations results (δ, L) (Xiao et al. 2016; Deng
et al. 2018). For accurate model predictions, the boundary conditions for (4.7) need to
match those in the DEM simulations. Following previous studies (Fan et al. 2014; Xiao
et al. 2016), a well-mixed inlet boundary condition with local concentration independent
of depth at the upstream end of the flowing layer is assumed, i.e. ci(x̃ = 0, z̃) = ĉi. At the
top and bottom boundaries of the flowing layer, the segregation flux equals the diffusive
flux, which are identical to those for size (or density) only segregation (Gray & Chugunov
2006), and is expressed as

[Ai + Bi(1 − ci)](1 − ci)ci = Cdiff
d̄2

dsδ

∂ci

∂ z̃
(z̃ = 0, −1). (4.8)

No boundary condition is needed at x̃ = 1 since both segregation and diffusion act in the
z−direction and the streamwise velocity is zero.

The predicted concentration profiles using a well-mixed inlet boundary concentration,
ci(x̃ = 0, z̃) = ĉi, are compared with the simulation results for Rd = 2 and Rρ = 4 for
three different inlet concentrations in figure 12 (corresponding to the simulations for the
three inlet concentration examples shown in figure 2). Each of the panels in figure 12(a– f )
depicts the local concentration of large particles, cl, in flowing layer corresponding to
the rectangular box in figure 1 (inlet is the left edge of each panel, free surface is the
top edge, bottom of the flowing layer where particles are deposited on the heap is the
bottom edge, and downstream endwall is the right edge). The continuum model results for
the large particle concentration throughout the flowing layer shown in the second row of
figure 12 are nearly identical to that for DEM simulation in the first row, demonstrating
how the model matches simulation results. Most significantly, the continuum segregation
model captures the reversed segregation for different feed concentrations. For ĉl = 0.2
(figure 12a,d) LH particles quickly segregate to the bottom of the flowing layer in the
upstream portion of the heap, while SL particles rise to the surface of the flowing layer and
are advected farther downstream. Increasing ĉl to 0.5 reverses the segregation direction,
such that LH particles rise toward the free surface and are advected downstream, as shown
in figure 12(b,e). Further increasing ĉl to 0.8 results in an enlarged LH particle region
in figure 12(c, f ) with SL particles only in the lower part of the upstream portion of the
flowing layer.
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Figure 12. Large heavy particle concentration for different feed concentrations: ĉl = 0.2 (a,d,g), ĉl = 0.5
(b,e,h) and ĉl = 0.8 (c, f ,i). Here, cl from (a–c) simulation and (d– f ) continuum model with inlet boundary
condition ci(x̃ = 0, z̃) = ĉi; (g–i) cl for LH particles (◦) and cs for SL particles (�) from simulation compared
with model predictions using (4.7) at the bottom of the flowing layer (curves), (i.e. z/δ = −1 or z̃ = −1) versus
streamwise position, x/L for inlet boundary condition set to feed concentration ci(x̃ = 0, z̃) = ĉi (dashed) or
mean concentration of particles deposited on the heap outside the feed zone ci(x̃ = 0, z̃) = 〈ci(x̃, z̃ = −1)〉
(solid). Inset: concentration fields corresponding to the model predictions of solid curve in (i). Here, Rd = 2,
Rρ = 4, q = 20 cm2 s−1, δ ≈ 1.5 cm and L = 52 cm.

Figure 12(g–i) compare the streamwise concentration profiles from the simulations (data
points) and continuum model predictions (dashed curves) at the bottom of the flowing
layer (z/δ = −1), which corresponds to the concentration of particles deposited on the
heap. Again the reversal of the direction of the segregation is evident. For ĉl = 0.2 the
concentration of LH particles is highest for x/L < 0.6 as they deposit on the upstream
portion of the heap along with SL particles. Pure SL particles deposit on the downstream
end of the heap. The situation reverses for ĉl = 0.5 and 0.8 where SL particles deposit
on the upstream portion of the heap along with a lower concentration of LH particles,
and pure LH particles deposit on the downstream portion. Moreover, that the continuum
segregation model can predict the combined size and density segregation for different inlet
concentrations as shown in figure 12 further validates the quadratic functional form of the
segregation velocity in (1.3).

The difference between the continuum model predictions (dashed curves) and
the simulations (data points) is small (less than 7 % on average) for ĉl = 0.2 and 0.5. The
slight deviations between simulation and model predictions in these two cases could be the
result of many factors including bouncing particles near the free surface and the decreasing
flowing layer thickness near the bounding endwall, neither of which are included in
the model. In contrast, the discrepancy between the continuum model prediction and
simulation results for ĉl = 0.8 is relatively large in the middle portion of the heap, see
figure 12(i). In addition, it is evident in figure 12(i) that the large particle concentration
integrated over the length of the heap is larger for the simulations than for the continuum
model and the small particle concentration is smaller. This is a result of strong segregation
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combined with deposition in the feed zone for ĉl = 0.8, noting that the segregation flux is
maximum near cl = 0.8 in figure 5 for these particular values of Rd and Rρ . Thus, small
particles segregate to the bottom of the flow in the feed zone to deposit on the heap before
they start to flow down the heap. As a result, the inlet of the flowing layer has a higher large
particle concentration and a lower small particle concentration than the feed concentration
(i.e. mixture falling onto the heap).

To account for segregation in the feed zone, we use a corrected inlet concentration for the
model, ci(x̃ = 0, z̃) = 〈ci(x̃, z̃ = −1)〉, which is the mean concentration at the bottom of
the flowing layer outside of the feed zone as determined from the simulation. Alternatively,
the mean inlet particle concentration at the inlet boundary where particles enter the flowing
layer (〈ci(x̃ = 0, z̃)〉) could be used. However, because the rise velocity varies slightly
near the feed zone, particles deposited on the bed through the bottom of the flowing
layer more accurately reflect the mean particle concentration entering the upstream end of
the flowing layer in the simulations. The corrected inlet concentrations measured from the
three simulations in figure 12 are 〈ci(x̃, z̃ = −1)〉 = 0.19, 0.49, and 0.83 rather than the
actual values of feed concentration of ĉl = 0.17, 0.47 and 0.79, respectively.

Model predictions using the corrected inlet concentration (solid curves) match the
simulation results more closely for ĉl = 0.8 in figure 12( f ) (inset) and figure 12(i),
significantly reducing the discrepancy for 0.3 < x/L < 0.6. For the other two cases with
ĉl = 0.2 and 0.5 in figure 12(g,h), the corrected inlet concentration has limited influence
on the model predictions, which is expected since the segregation flux is less than half of
that for ĉl = 0.8, and the particles entering the flowing layer are relatively well mixed.

A more rigorous test of the continuum segregation model and the quadratic form of
the segregation velocity of (1.3) is to consider flows with different combinations of size
and density ratios (Rd = 1 − 2 and Rρ = 1/2 − 4), a different heap width (W = 0.4 m),
and a different feed rate (q = 15 cm2 s−1) than those used to obtain the parameters of
the segregation model, i.e. Ai and Bi in figure 9. Similar to figure 12(g–i), the predicted
concentration profiles (curves) for particles deposited on the heap are compared with the
simulation results (data points) in figure 13, but only for the large particle concentration so
that three different feed concentrations can be more clearly shown for each case. Among
the four different cases, the Rd = 1 and Rρ = 4 case reduces to density only segregation,
for which the continuum segregation model works well, as shown in figure 13(a). A more
interesting case occurs when size and density differences enhance one another, as shown in
figure 13(b) for Rd = 2 and Rρ = 1/2. Again, the model predictions match the simulation
results reasonably well despite some discrepancies for ĉl = 0.5 and 0.8 due to significant
segregation in the feed zone similar to that in figure 12(i). Using the corrected inlet
concentration determined from the simulations significantly reduces these discrepancies
(solid curves).

For Rd = 1.5 and Rρ = 4 in figure 13(c) and Rd = 2 and Rρ = 2 in figure 13(d), the
size and density segregation mechanisms oppose one another. In figure 13(c), the shape
of the curves depends strongly on the inlet concentration, particularly at the downstream
end of the heap (large x/L) where the large particle concentration goes to 1 for large ĉl
and 0 for small ĉl in figure 13(c). According to figure 11, the equilibrium concentration is
cl,eq ≈ 0.5, and the results for ĉl = 0.5 in figure 13(c) indeed show that the particles remain
mixed throughout the entire length of the flowing layer. Figure 13(d) corresponds to a case
where cl,eq ≈ 0.1 (see figure 7(a) and 11). Again, particles remain mixed at ĉl = 0.2 for
almost the entire length of the flowing layer, as would be expected for this concentration
that is very close to the equilibrium concentration. On the other hand, for other values of
ĉl, the particles segregate. Again the use of a corrected inlet concentration improves the
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ĉl  = 0.8

ĉl  = 0.8

ĉl  = 0.8ĉl  = 0.8
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ĉl  = 0.5

ĉl  = 0.5

ĉl  = 0.5

ĉl  = 0.2 ĉl  = 0.2

ĉl  = 0.2ĉl  = 0.2

Rd = 1, Rρ = 4 Rd = 2, Rρ = 1/2

Rd = 1.5, Rρ = 4 Rd = 2, Rρ = 2

Figure 13. Streamwise large particle concentration profiles at z/δ = −1 for different feed concentrations with
a variety of size and density ratios from simulation (symbols) and model (curves). Solid curves are model
predictions with the inlet boundary condition ci(x̃ = 0) = ĉi while dashed curves are model predictions with
a corrected inlet boundary condition measured from simulation, ci(x̃ = 0, z̃) = 〈ci(x̃, z̃ = −1)〉. Here, q = 15
cm2 s−1, δ ≈ 1.5 cm and L = 43 cm.

match between the continuum model and the simulation results. However, even without
this correction, the agreement for all four cases in figure 13 is remarkable given the wide
range of Rd, Rρ and ĉl, not to mention the simplifying assumptions for the velocity profile
and uniform flowing layer thickness. This shows that with appropriate model coefficients,
the quadratic segregation velocity model of (1.3) can accurately predict bidisperse heap
flow segregation not only for different feed concentrations, but also for different particle
size and density ratios.

5. Conclusions

When two segregation driving mechanisms (i.e. percolation and buoyancy) compete with
each other, the segregation flux varies non-monotonically with particle concentration such
that the segregation direction can reverse, depending on the relative concentration of the
two species. This is different from size or density segregation alone, where the segregation
velocity and flux never change sign (Schlick et al. 2015a; Xiao et al. 2016; Jing et al. 2017;
Jones et al. 2018).

Although the segregation behaviour of SD-systems is more complicated than S- or
D-systems alone, it is possible to model the local concentration dependent rising and
sinking behaviour in free surface flows. To do so, we extend a predictive model for either
size or density segregation alone to bidisperse granular materials where particles can
differ simultaneously in both size and density using a segregation velocity model that
is quadratic in particle concentration (1.3). The two model coefficients can be determined
from DEM simulations of quasi-2-D bounded heap flow for a range of combinations of
particle size and density ratios. Our segregation velocity model, which is quadratic in
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particle concentration, is qualitatively similar to the model derived within the framework
of mixture theory (Gray & Ancey 2015). By incorporating the quadratic segregation
velocity model into an advection–diffusion–segregation transport equation, the model
predictions match well with simulation results.

The theoretical framework presented here is consistent with previous studies, which
means the extended segregation velocity model of (1.3) should be applicable to not only
quasi-2-D bounded heap flow but also other 2-D (Schlick et al. 2015b; Xiao et al. 2019)
and three-dimensional (Isner et al. 2020a,b) geometries with known flow kinematics.
Moreover, continuous size distributions could be considered in this same framework for
polydisperse segregation (Schlick et al. 2016; Deng et al. 2019; Gao et al. 2021). However,
more research is needed to validate the model for a wider range of particle properties,
particularly with respect to the effect of particle size and density ratios on the coefficients
Ai and Bi. Some progress has been made in this direction for single intruder particles
in SD-systems (Jing et al. 2020), but connecting single intruder results to mixtures
of particles like those considered here is not yet possible. Nevertheless, the results in
figures 12 and 13 indicate that the extended segregation velocity model can accurately
predict combined size and density segregation.

An interesting implication of the concentration dependent segregation direction is the
stability of particle mixtures at the equilibrium concentration indicated in figure 11.
For heap flows like those in figure 5, reduced segregation flux near the equilibrium
concentration increases the segregation time scale to be much greater than the time scale
of heap flow kinematics. In such cases, particles deposit onto the heap without significant
segregation occurring. Intentionally designing non-segregating particle systems based
on appropriate values for particle size, density and concentration is explored in detail
elsewhere (Duan et al. 2021). Or, in another interesting situation, segregation occurs
until the local concentration reaches the equilibrium concentration, cl,eq, and then
stops. Evidence of this appears in figure 5(a) where the data points reach a limit near
the equilibrium concentration (cl,eq ≈ 0.4) when approached from either side of the
equilibrium concentration. For example, blue data points for ĉl = 0.3 fall in the range
of 0 ≤ cl � 0.4 because once the local concentration reaches cl,eq ≈ 0.4 the particles no
longer segregate and remain mixed. As a result, only a small fraction of the data points are
for a local concentration that exceeds cl,eq. A similar result occurs when cl,eq is approached
from a higher concentration, although it is not clearly evident in figure 5(a) because of
how data points overlay one another. This could have interesting implications for other
flow configurations such as rotating tumblers, where particle mixtures initially near the
equilibrium concentration can evolve for sufficient time that an instability occurs in which
a small perturbation of concentration results in segregation that pushes the local mixture
concentration farther away from the equilibrium concentration and further segregation
continues. This is beyond the scope of this study but deserves further investigation.

The problem of segregation in granular materials is too expansive to ever be declared
fully solved for all possible mixtures and flows. Advances in direct simulations will
continue and then become routine, and new conceptual breakthroughs will occur that
yield new insights into the physics of the problem. However, we seem to have reached a
stable rung on the ladder of modelling segregation in terms of continuum models. Models
describing size or density driven segregation have been shown to capture – in three way
comparisons – both experimental and computational results. And now, in what may be
regarded as nearly the last step in the evolution of such continuum models, we have shown
that it is possible to simultaneously model size and density segregation.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.342.
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Appendix A. Comparison with previous models

Unlike the segregation velocity model developed in this work, previous models by Marks
et al. (2012), Tunuguntla et al. (2014) and Gray & Ancey (2015) are based on mixture
theory, in which partial pressure and interspecies drag models are needed to close the
momentum equation and solve for the segregation velocity. We compare each of these
models to the present model below. Marks et al. (2012) propose a partial pressure Pi for
constituent i proportional to the mean diameter ratio of constituent particle species to the
bulk, i.e. Pi/P = di/

∑
dici. Using a linear drag model, the segregation velocity for large

particles is

wseg,l = γ̇
g cos α

Cdrag

(
dl

d̄
− ρl

ρ̄

)
. (A1)

Substituting d̄ = ∑
dici and ρ̄ = ∑

ρici into the equation above gives

wseg,l = γ̇
g cos α

Cdrag

(1 − cl)(Rd − Rρ)

(Rdcl + 1 − cl)(Rρcl + 1 − cl)
. (A2)

Regardless of the values of the drag coefficient Cdrag (a fitting parameter based on
simulation results), local shear rate γ̇ and local concentration cl, the segregation direction
is only determined by Rd − Rρ in the numerator. Hence, the model is unable to predict the
observed concentration dependent segregation direction.

The model by Tunuguntla et al. (2014) differs from the model of Marks et al.
(2012) in two key points. First, the volume ratio of the species to the bulk is used
for calculating the partial pressure: Pi/P = d3

i /
∑

d3
i ci. Second, a mass-weighted bulk

velocity, w = ∑
ρiciwi/

∑
ρici, is used in contrast to the volume-weighted bulk velocity,

w = ∑
ciwi/

∑
ci, in the Marks et al. (2012) model as well as our model. The

mass-weighted relative velocities of the two species are expressed as

wl − w = γ̇
g cos α

Cdrag

1
Rρ

[
cl(R3

d − Rρ)

cl + (1 − cl)R3
d

]
(A3)

and

ws − w = −γ̇
g cos α

Cdrag

[
(1 − cl)(R3

d − Rρ)

cl + (1 − cl)R3
d

]
. (A4)

Since w is mass-weighted rather than volume-weighted, it is unclear how to determine
the segregation direction based on the segregation velocity. However, we can relate the
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segregation direction to the relative velocity between the two species:

wl − ws = γ̇
g cos α

Cdrag

1
Rρ

[
[cl + (1 − cl)Rρ](R3

d − Rρ)

cl + (1 − cl)R3
d

]
. (A5)

In this expression, the segregation direction depends only on R3
d − Rρ in the numerator,

which is independent of cl. Again, similar to the Marks et al. (2012) model, the Tunuguntla
et al. (2014) model is unable to predict the observed dependence of the segregation
direction on species concentration.

For further comparison with our model, figure 14(a) overlays the rise–sink transition
predicted by Marks et al. (2012) and Tunuguntla et al. (2014) on figure 11. Both models
can be represented by a single curve in the (Rd, Rρ) space in figure 14(a), because the
predicted rise–sink transition does not depend on the mixture concentration. Neither model
can predict the observed rise–sink transition over a range of mixture concentrations.
The predictions of the Marks et al. (2012) model, which is independent of cl,eq (or,
equivalently, valid for 0 < cl,eq < 1), clearly differ from our model (which is based on
and matches DEM simulation results), except perhaps in a qualitative sense for cl,eq ≈
0. The non-segregating condition predicted by Tunuguntla et al. (2014), which is also
independent of cl,eq (valid for 0 < cl,eq < 1), is similar to that of the present model only
for cl,eq = 0.5, but differs substantially for other values of cl,eq. Interestingly, to support
their model, Tunuguntla et al. (2014) measured the equilibrium condition for chute flows
of equal volume mixtures (cl = cs = 0.5). These results (data points with error bars in
figure 14a) are consistent with the present model and DEM simulations for cl,eq = 0.5,
further supporting the present model. For completeness, we also include in figure 14(a)
the Jenkins & Yoon (2002) model that is derived from the kinetic theory of granular flows
(known as KTGF) for cl,eq = 0.5. Despite the success of this model in predicting the
rise–sink behaviour of equal volume mixtures in fluidized particle beds (Hong et al. 2001),
this granular temperature based approach, while appropriate for dilute granular flows, does
not directly apply to the dense flow regime considered here. As a result, its prediction does
not match our DEM validated model for cl,eq = 0.5, as shown in figure 14(a).

The model by Gray & Ancey (2015) is functionally capable of predicting the
concentration dependent segregation direction, in contrast to the models of Marks et al.
(2012) and Tunuguntla et al. (2014), because the partial pressure takes a different form,
Pi/P = [1 + Bij(1 − ci)]ci, where |Bij| ≤ 1 is a coefficient dependent on particle size ratio
Rd. The quadratic form of partial pressure substituted into the momentum equation leads to
a concentration dependent segregation direction for certain values of Bij. Following their
approach, the particle segregation fluxes are expressed as

Φl = g cos α

Cdrag

[
1

Rρ

− 1 +
(

cl + 1 − cl

Rρ

)
Bls

]
cl(1 − cl) + wdiff cl (A6)

and

Φs = g cos α

Cdrag

[
Rρ − 1 − (

Rρcl + 1 − cl
)

Bls
]

cs(1 − cs) + wdiff cs, (A7)

where

wdiff = −g cos α

Cdrag

[
1

Rρ

+ Rρ − 2 +
(

2cl + 1 − cl

Rρ

− Rρcl − 1
)

Bls

]
cl(1 − cl), (A8)

is the difference between mass-weighted and volume-weighted mean velocities. Though
an explicit expression for Bls as a function of Rd is not provided, we can make some
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Figure 14. (a) Equilibrium (no segregation) concentration of large particles cl,eq versus particle size and
density ratios. Black circles and solid curves are identical to those in figure 11 of the paper. Here, cl,eq = 0.5 is
highlighted as a bold black curve. Coloured curves show the rise–sink prediction from previous studies. Blue
data points represent neutral segregation conditions for mixtures with cl = 0.5 in chute flow DEM simulations
(Tunuguntla et al. 2014). (b) Segregation flux data for Rd = 2 and Rρ = 4. Bold curves overlaying the data
are predictions of the present model identical to those in figure 5. Thin curves are predictions of (A6) by
Gray & Ancey (2015) in the appropriate C10 parameter range assuming Cdrag = 30/γ̇ ds for Bls = 0.75 and
1, respectively. Gray & Ancey’s model prediction does not match the DEM simulation results for segregation
reversal, cl,eq, regardless of the values of Bls.

reasonable assumptions to quantitatively compare the measured segregation flux in figure 5
and the prediction of Gray & Ancey (2015) for specific values of Bls and Rρ (based
on values for C4, C5 and C10 in figure 4 in their paper). However, they do not provide
information about the functional form of Cdrag, and the dependence of segregation flux
on shear rate γ̇ and particle size di are not explicitly considered. In order to accomplish a
comparison with our results, we assume Cdrag = C′

drag/γ̇ ds and a value for C′
drag such

that the magnitude of the segregation flux is similar to what we measure, noting that
different values of C′

drag only change the amplitude of the segregation flux curve, not
the equilibrium concentration cl,eq at which segregation reverses. Figure 14(b) compares
our segregation flux data for g = 9.81 m s−2, α = 28o, Rd = 2 and Rρ = 4 with the
prediction of the model of Gray & Ancey (2015) with C′

drag = 30 for Bls = 0.75 and 1,
which are the extremes of the C10 parameter region (i.e. 0.75 < Bls ≤ 1 for Rρ = 4 in
which the segregation reverses for 0 < cl,eq < 1). These values for C′

drag and Bls result in
segregation flux magnitudes qualitatively similar to those from our DEM simulations and
which our model accurately describes. More important, however, are the values for cl,eq,
where the segregation flux reverses. Results for the model of Gray & Ancey (2015) differ
significantly from our data. Their model indicates a large value of the concentration where
the segregation reverses, 0.67 ≤ cl,eq ≤ 1, for the valid range of Bls that they specify. This
differs considerably from the value of cl,eq ≈ 0.35 from our DEM simulations. This is
mainly because a symmetric form for the partial pressure fails to capture the asymmetric
concentration dependence in size segregation. In another approach to apply the model
of Gray & Ancey (2015), we empirically determine the value of C′

drag by performing a
least squares fit between their model and our flux data using Bls = 0.75, 1 and Rρ = 4.
However, this does not change the value of cl,eq in their model, so just like the approach of
simply specifying a value for C′

drag, the predicted value for the concentration at which the
segregation reverses is far from the measured value. Thus, like the three models considered
in figure 14(a), it is clear that the Gray & Ancey (2015) model does not accurately predict
the concentration dependence of the segregation flux found in the DEM simulation results.
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Material Colour Diameter (mm) Density (g cm−3)

Glass Light 1.45 ± 0.2 2.58
Steel Dark 2.98 ± 0.04 7.84

Table 2. Particle properties in experiments.

(a) (b) (c)
csteel = 0.11 csteel = 0.13 csteel = 0.26

Figure 15. Heap flow segregation for mixtures of large steel (dark) and small glass (light) particles with Rd ≈ 2
and Rρ ≈ 3. Steel particles sink while glass particles rise for csteel = 0.11, as buoyancy overcomes percolation,
leading to more glass particles depositing at the downstream end. In contrast, for csteel = 0.26 segregation
reverses as percolation dominates over buoyancy. Particles remain relatively mixed for csteel = 0.13.

Equations (A1)–(A8) from Marks et al. (2012), Tunuguntla et al. (2014) and Gray &
Ancey (2015) also indicate that the segregation flux depends linearly on the gravitational
constant g and the cosine of the repose angle α. This differs from our model for free
surface flows in which the segregation model coefficients Ai and Bi in (3.1) are essentially
independent of g or α, as is discussed in more detail in the supplementary material.

Appendix B. Experiment

To validate the concentration dependent segregation direction observed in DEM
simulations and predicted by the model, experiments were performed with large steel and
small glass particles. The experimental set-up is similar to that in the simulation. The heap
width between the bounding endwalls is W = 0.4 m. The gap between the two parallel
glass plates is T = 1 cm. Particle mixtures are fed into the system by an auger feeder at
a rate of Q = 12 cm3 s−1. The width of the feed zone is Wf = 4 cm. With the particle
properties given in table 2, the size ratio of large steel to small glass particles is Rd ≈ 2
and the density ratio is Rρ ≈ 3. Figure 15 shows images for different feed concentrations.
The segregation direction reverses as the feed concentration of steel particles, csteel, is
increased from 0.11 to 0.26.
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